
Search Developers Guide

Introduction
Search Back-End Components

org.eaglei.ui.gwt.search.server.SearchServlet
org.eaglei.services.InstitutionRegistry
org.eaglei.ui.gwt.suggest.server.DataSuggestServlet
org.eaglei.search.harvest.PollingDataHarvester extends DataHarvester
org.eaglei.search.harvest.RepositoryStreamHarvester implements PollingDataHarvester
org.eaglei.search.harvest.MultiDataSourceStreamHarvester implements PollingDataHarvester
org.eaglei.solr.suggest.SolrDataSuggestIndexer implements ResourceChangeListener
org.eaglei.search.provider.MultiDataSetSearchProvider implements SearchProvider
org.eaglei.solr.search.SolrSearchProvider implements SearchProvider

Solr
org.eaglei.solr.EagleISolrConfig

Introduction
The eagle-i search application is packaged and deployed in two configurations: and . The institution search application deployment institution central
supports the search of resource data in a single institution's eagle-i repository. The central search application deployment supports the search of data in a
set of eagle-i institution repositories.

In the eagle-i source tree, the project is used to build the single institution search app. The project is used webapps/institution webapps/central
to build the multi-institution search application.

The institution and central webapp projects contain very little code consisting of two java-based configuration files that determine in which mode the client
and server search implementation will be executing.

InstitutionApp.java and are the Google Web Toolkit (GWT) implementations that determine in which mode the CentralApp.java EntryPoint
GWT-based browser UI will execute. They instantiate a with the parameter true or false that tells the UI whether it should SearchApplicationContext
display single or multi-institution search components. For example, in single institution mode, the Institution filter will not be displayed in the Location
section of the sidebar, and the institution name is not displayed in the search result summary.

InstitutionSearchConfig.java and are Spring configuration files that determine the back-end Spring beans that CentralSearchConfig.java
will be loaded for the two search app modes. In particular, it defines the singleton bean which is the core handler for search rootSearchProvider
requests from the client.

The bulk of the search application implementation lives in the library project dependencies of institution and central WAR projects.

Search Back-End Components

Key components of the back-end and client implementation are described below:

Notes:

=> Indicates a singleton (Spring Bean) dependency

Italic comments in parenthesis indicates potential changes to the current implementation

org.eaglei.ui.gwt.search.server.SearchServlet

SearchServlet handles the core set of search operations requested by the the client. In the method, references to its SearchServlet init()
singleton dependencies are obtained, and harvesting of eagle-i repository data is initiated.

=> ConnectionManager

Called to validate user session ids ()Move into SearchProvider?

=> InstitutionRegistry

API for getting Institution list when running in central mode (Should be moved to some other servlet.)

=> PollingDataHarvester

Initiate search index population (Make SearchProvider API?)

On search operation, first check if initial data indexing has completed (Make SearchProvider API?)

=>SearchProvider

Process SearchRequests
Get search result list: , SearchResultSet SearchResult
Get supertype & subtype counts:ClassCountResult

Get resource provider type counts:ClassCountResult
Standard implementation is a , described belowMultiDataSetSearchProvider

=>*EIOntModel

Compute "root" type of search result ()have SearchProvider compute; part of SearchResult

=> AsynchronousLoggerSearch, AsynchronousLoggerCount

DB logging of search request, counts, performance

org.eaglei.services.InstitutionRegistry

Static list of institution information (should be dynamically initialized, for example, determine which institutions are currently accessible)
Provides name, id, and for each institution RepositoryHttpConfig (migrate from legacy URIs.)
Used to lookup institution EIEntity (label) from id
/common/services/src/main/resources/services-config.xml is the primary configuration file for . It is InstitutionRegistry
packaged in JAR . It has a dependency on finding an institution-registry.properties file in the classpath (Should be loaded from classpath location)
which contain properties

org.eaglei.tier
used to compute URIs
(need to confirm that things work if prop is omitted, prod implicit)

org.eaglei.subdomain
defines what node app is running as: "search" for central, or institution subdomain/id
used to compute URIs
(TODO: bad prop name, fairly hacky overloading...)

org.eaglei.repository.username
org.eaglei.repository.password ()TODO: central: can't assume same for every institution

org.eaglei.ui.gwt.suggest.server.DataSuggestServlet

DataSuggestServlet is the server-side provider of the list of suggestions displayed as the user types in a search string. Note that client-server
communication for this servlet is JSON-based rather than GWT RPC.

=>DataHarvester

On suggest operation, first check if initial data indexing has completed (make SuggestionProvider api?)

=> SuggestionProvider

Process EnityMatchRequest
Get suggestions: List<EntityMatch>

org.eaglei.search.harvest.PollingDataHarvester extends DataHarvester

addChangeListener(ResourceChangeListener)
(EIEntity institution)
onChangeEvent(ResourceChangeEvent event)
onChangeStreamEnd(EIEntity institution, Date lastModifiedDate)

(no rollback support. Needed?)
optimize()
harvest()
hasInitalData(); (move to SearchProvider?)
startPolling()

org.eaglei.search.harvest.RepositoryStreamHarvester implements PollingDataHarvester

=>InstitutionRegistry

Get for a given institution, to call harvestRepositoryHttpConfig

=> EIOntModel

Lookup from URIs (label)EIEntity
Lookup valid property list for type
Get list of resource provider property URIs
Harvests from a single eagle-i repository
List of ResourceChangeListeners
Parses harvest response body in to ResourceChangeEvent
Two event types: Delete, Changed

(Withdrawn, Return to Curation/Draft vs. Delete?)
(Create vs Changed?)

Drops all resource change notifications that don't have a label property, or type property
Ignores all properties that don't conform to current EIClass
Ignores all types that aren't in the current data model
Exception in a notification is isolated to that listener (no rollback support. Needed?)

(add support for computing inverse properties, if not done in the repository; here or in indexer)
on call to , creates a thread that calls startPolling() harvest()

10 sec sleep (make configurable)
(Timeout if ResourceChangeListener takes too long?)
(Drop out on out of memory exception?)
(Would be nice to get change notification from repo for referencing resources, on delete especially)

org.eaglei.search.harvest.MultiDataSourceStreamHarvester implements PollingDataHarv
ester

multiple institution repository DataHarvester
holds a list of DataHarvester
on call to startPolling(), creates thread that calls each DataHarvester.harvest() sequentially
2 sec sleep (make configurable)
change events go each ResourceChangeListener from a single thread

 org.eaglei.solr.search.SolrSearchIndexer implements ResourceChangeListener
*added to a DataHarvester as a ResourceChangeListener

=> EIOntModel

=> Analyzer

=> Directory

=> ClassUsageCache

Used to avoid getting counts for unused classes

=> ProviderUsageCache

Used to avoid getting counts for unused provider types

=> SearchExcludeConfiguration

/common/runtime/solr/src/main/resources/search-config.xml

Exclude all "Generic Lab" provided resources
Exclude all non-resource provider Organization instances
handle resource data received in any order
unresolved object property values
compute and store inferred supertypes
store resource provider info
assumption: embedded class data always received after containing class
rolls up properties of "flatten" annotated instances (embedded & search_flatten) into containing instance
exclude all flatten instances from search results (add support for some flatten instances that can be search results)
(Index-time boosting of doc types and fields)

org.eaglei.solr.suggest.SolrDataSuggestIndexer implements ResourceChangeListener

added to a as a DataHarvester ResourceChangeListener

=> EIOntModel

=> Analyzer

This is a different analyzer than the search analyzer

=> Directory

Separate index from search index (same index?)_
Stores "terms" used in all resource documents
Resource instance label
Ontology class label
Ontology class synonyms
(Resource instance Alternative Name)
(Select free text property values:_ gene name)
(Find term usage in free text)
Stores the "categories" in which the term is utilized
The top-level search sidebar resource types
UnknownCategory (People, Orgs)

org.eaglei.search.provider.MultiDataSetSearchProvider implements SearchProvider

Maps a dataset id (eagle-i, PubMed, Entrez Gene, NIF, etc.) in SearchRequest to a SearchProvider implementation for that source of data.

org.eaglei.solr.search.SolrSearchProvider implements SearchProvider

SolrSearchProvider is class that executes a search query on the eagle-i data stored in a Solr indices.The data available to be searched may be single- or
multi-institution based on application configuration. The SolrSearchProvider ensures that UI dependencies such as the match highlighting snippit are set in
the search response.

=> InstitutionRegistry

For lookup of institution EIEntity (label) to put in response

=> SolrServer

The SolrServer to be queried -- implementation described below.

=> ClassUsageCache

Get supertypes and subtypes to perform count queries on

=> ProviderUsageCache

Get resource provider types to perform count queries on

=> SolrDataSuggestProvider

Used to extract entity URI(s) from search string. For example, recognize that the query string "thermal cycler" is the label of a type of instrument in
the eagle-i ontology. By determining a URI for a search string, matches on the URI can be prioritized.

=> SolrSearchQueryBuilder

Generates a Lucene query from a SearchRequest

Solr

The eagle-i system supports three Apache.Solr index configurations: , , and .ModelSuggest-core Search-core DataSuggest-core

An instance of a utilized by eagle-i web application (e.g. Search, SWEET, Ontology Browser) will contain one or more of these three indices. SolrServer
Currently, each web application instantiates its own embedded with the cores that the particular web app need.It is anticipated that in the SolrServer
future, web applications will utilize a shared .SolrServer

ModelSuggest-core is an index of all terms in the eagle-i ontology. This core is used to provide autosuggest of ontology class labels and class
synonyms. The suggestion list returned can be filtered by type (class uri): for example, only return suggestions of type Instrument. Clients of Mode

 include the SWEET form fields, and the Ontology Browser (Glossary) searchbox.lSuggest-core

Search-core is an index of eagle-i resource data. Querying this index produces the relevance ranked list of search results presented to the user in
the search application. The central search application maintains an index of data from all institutions in the network. The search application on
each institutional node maintains an index of the data of that particular institution.

DataSuggest-core supports the suggestions offered by the search application search box. It is an index of all resource instance labels. It also
indexes ontology terms and synonyms, however, unlike , will only include ontology terms *currently ModelSuggest-core DataSuggest-core
used in the dataset*. For example, if the ontology term "Lepidosauria" is not currently used by any resource in the eagle-i dataset, it will not be
offered in autosuggest.

Another feature of the is that it keeps track of the resource categories in which any given term (resource label or class label) is used. DataSuggest-core
This supports the "in Instruments" and "in Reagents" feature of the search autosuggest.

org.eaglei.solr.EagleISolrConfig

This class is provides api for reading in solr configuration files, and determining the location that solr data files will be written.

By default, the configuration files for these solr cores are read from the solrhome directory in the eagle- .i-common-solr.ja

The location of data files created for the these core indices is the concatenation of the system property , a string passed to the org.eaglei.home
constructor of (normally the -- search, sweet, glossary), plus the name of the core.EagleISolrConfig application name

	Search Developers Guide

