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ABSTRACT  
 
Background: Physician notes routinely recorded during patient care represent a 
vast and underutilized resource for human studies on a population scale. Their 
use in research is limited primarily by the need to remove all identifying 
information before they can be included in a study, a process that can be very 
resource-intensive when performed manually. While automated de-identification 
allows for greater numbers of physician notes to be included in a study, training 
such de-identification models requires access to large amounts of private 
information that in turn must also be annotated manually. This study seeks to 
create an automated method for de-identifying physician notes that does not 
require  large amounts of private information: In addition to training a model to 
recognize Protected Health Information (PHI) from private physician notes, we 
reverse the problem and train a model to recognize non-PHI words that appear in 
public medical texts.  
 
Methods: Multiple collections of public and private medical texts were analyzed 
to train a decision tree classification model. Publicly available medical 
vocabularies and journal publications were used to learn the negative examples -
- the probability distributions of non-PHI words. Private physician notes were 
used to learn the positive examples -- probability distributions of PHI words. The 
positive examples were augmented with census names and word patterns 
published in other studies. In total, 26 word features were analyzed to model 
non-PHI words and each type of PHI. 
 
Results: The model successfully de-identified texts from 220 discharge 
summaries with 98% sensitivity with 89% specificity. Furthermore, the model 
removed 99.4% of unique IDs that refer to the patient and not the hospital or 
treatment. The results exceed the previously approved criteria established by 
four Institutional Review Boards.  
 
Conclusions: The results indicate that distributional differences between private 
and public medical text can be used to accurately classify PHI. The data and 
algorithms reported here are made freely available for evaluation and 
improvement.!



 
 
 
I. BACKGROUND 
 
Physician's notes contain information that may never be recorded in a coded 
format in the patient health record[1-3], such as family history[4], smoking 
history[5-7], and descriptions of lab results[8, 9].  Nonetheless, the “uncoded” 
information buried in physician notes is so valuable that numerous attempts have 
been made towards indexing and sharing notes for research use. However, since 
physician notes can contain patient names, home addresses, social security 
numbers, and other types of Protected Health Information (PHI)[10], vast 
quantities of doctors’ notes have gone largely unused for medical research 
studies. Methods to simultaneously protect patient privacy and increase research 
utility are needed  – as the number of electronic health record systems increases 
and with it  the opportunity to study larger numbers of patients[11, 12]. 
 
Existing methods for de-identifying medical texts range from simple rule-based 
systems to sophisticated machine learning algorithms [13, 14]. The majority of 
currently implemented methods are rule-based systems that match patterns and 
dictionaries of expressions that frequently contain PHI[15]. The advantage of 
rule-based systems is that experts can quickly define rules and iteratively fine-
tune them to achieve higher accuracy. While rule-based systems have shown 
high sensitivity in some settings[15], they often have the disadvantage of hard 
coding rules to a specific note format or physician writing style, resulting in poor 
performance in other contexts. Adjusting existing rule systems for use at other 
medical centers is often too costly, limiting broad use across institutions. This 
problem is well recognized,[13, 14] and has prompted efforts using an 
alternative, machine learning approach. Rather than using the expert to author 
rules, the rules for PHI removal are “learned” by training an algorithm using 
human annotated examples (i.e. a supervised learning task). For example, 
competitors in the i2b2 de-identification challenge[13] were asked to train or tune 
their algorithms on one set of human annotated notes and then validate their best 
model on a separate set of annotated notes. Generally, the highest scoring 
algorithms used machine learning methods such as conditional random 
fields,[16] decision trees,[17] and support vector machines[18]. 
 
The work reported here was trained and validated on the same i2b2 challenge 
datasets, which allows for comparison to prior work. Our algorithm performed 
favorably with regards to sensitivity, albeit with lower specificity (see results). The 
primary difference between our method and other methods is the extensive use 
of publicly available medical texts. We show that publicly available medical texts 
provide an informative background distribution of sharable medical words, a 
property that is largely underutilized in patient privacy research.  
 
 
 
 



II. METHODS 
 
Instead of trying to recognize PHI words in physician notes, we reversed the 
problem towards recognizing non-PHI words. We asked, “what are the chances 
that a word or phrase would appear in a medical journal or medical dictionary? 
What are the lexical properties of PHI words? To what extent can we use publicly 
available data to recognize data that is private and confidential?”  
 
While human annotated datasets of PHI are few in number and difficult to obtain, 
examples of non-PHI medical text are broadly available and generally 
underutilized for de-identification. By definition, medical journal publications 
provide the distributional evidence for words that are not PHI. Of course, some 
medical words will end up being proper names but the public corpora provide a 
heuristic measure of likelihood that we exploit as described below. In this context, 
relatively fewer human annotated examples are treated as approximations of the 
distributional properties of PHI. Lexical comparisons between PHI words and 
non-PHI words reveal that all PHI words are nouns and numbers – whereas all 
verbs and adjectives are probably ok to share -- especially medically relevant 
verbs and adjectives that are of more relevant to research studies. Publicly 
available lists of suspicious words and expert rules are also incorporated into this 
algorithm, such as US census data and regular expressions found in or around 
PHI terms. We combine the discrimination power of these complementary 
perspectives to achieve improved de-identification performance. As an additional 
safeguard, notes can be indexed[19] and later searched using coded medical 
concepts, thereby reducing the number of full-text reports that need to be shared 
in early phases of research[20].  
 
 
Design Principles 
 
The Scrubber was designed with the following general observations about 
physician notes and other types of medical text: (1) words that occur only in 
physician notes have increased risk for PHI, especially nouns and numbers 
which are the only types of PHI words; (2) words that occur in medical 
publications are not likely to refer to any specific patient; (3) words and phrases 
in medical vocabularies also do not refer to individually named patients; (4) 
words shared in many publically available medical text sources are very unlikely 
to contain PHI (FIGURE 1).  
 



 

 
 
Figure 1: Observations of physician notes with other types of medical text  
1. Words that occur only in physician notes have increased risk for PHI, 

especially nouns and numbers.  
2. Words that occur frequently in medical publications are not likely to contain 

PHI.  
3. Words and phrases that occur frequently in medical vocabularies are not 

likely to contain PHI. 
4. Words shared in all three medical text sources are very unlikely to contain 

PHI. 
 
 
Different Types of PHI 
 
The risk to patient confidentiality differs among the 8 major types of HIPAA 
defined PHI elements (TABLE 1). Accordingly, the primary goal of this study was 
to remove sensitive text that refers uniquely to a single patient including patient 
names, IDs such as medical record numbers, phone numbers, and home 
addresses. Fortunately, single patient identifiers are rarely necessary in patient 
research. As a secondary objective, this study sought to classify all types of PHI 
defined by HIPAA. This includes features that may refer to many patients, such 
as a hospital name, patient age, date of service, or doctor. These features are 
useful for studies of disease over time and should not necessarily be scrubbed if 
Limited Data Set[21] access is permitted by the hospital privacy board.  
 
 
 



PHI Type Minimum 
Disclosure Risk 

Hospital LDS Minimal 
Age LDS Minimal 
Date LDS Minimal 
Doctor LDS Minimal 
Location LDS Varies 
Patient Identified High 
ID Identified High 
Phone Identified High 

 
Table 1: Types of PHI and their risk to patient confidentiality 
Minimum Disclosure refers to the level of permission typically required by an IRB. 
Limited Data Sets (LDS) contain features about a patient that refer to more than 
one patient. Identified level access almost always refers to a single patient, such 
as a patient name, medical record number, or phone number. 
 
 
We anticipated that each type of PHI would have a unique set of association 
rules. For example, patient names are nouns whereas medical record numbers 
are numbers. Learning different association rules[22] for each type of PHI has 
the added benefit that additional weight can be placed on highest risk elements, 
such as the patient name or home address. All types of PHI types are generally 
represented as nouns and numbers with low term frequencies, low occurrence in 
medical controlled vocabularies, and non-zero regex matches of some type. Non-
PHI words generally have higher term frequencies, higher occurrence in medical 
vocabularies and near zero matches in regular expressions of any type.  
 
!
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Feature Set Construction 
 
The Scrubber constructs a feature set in four steps: lexical, ontological, 
patterned, and statistical (FIGURE 2). First, the document instance is split into 
fragments and analyzed for part of speech and capitalization usage[23]. Second, 
each fragment is matched against dictionaries of controlled medical 
vocabularies[24] and US census data[25]. Third, regular expressions are applied 
for the eight categories of PHI. Lastly, term frequencies are assigned to each 
token in the document. 
 
 



 
Figure 2: Phases of the Scrubber Annotation Pipeline 
1. Lexical Phase: split document into sentences, determine part of speech for 

each word.  
2. Ontological Phase: search for each word/phrase in the known medical 

dictionaries and census names list.  
3. Patterned Phase: match regular expressions for each category of PHI 
4. Statistical Phase: determine term frequency for each token both with and 

without regard to part of speech. 
 
 
 
The Scrubber software leverages several other Open Source packages. The 
data processing pipeline is provided by Apache UIMA project[26], an engineering 
framework commonly used in Natural Language Processing[27]. Of note, UIMA 
does not provide any pre-built components for text processing, it provides the 
main “scaffolding” and flow between user developed components. In the lexical 
phase, cTAKES splits each document into sentences[28] and determines the part 
of speech for each token. cTAKES is especially appropriate because it has been 
extensively trained on medical documents[23]. In the ontological phase, each 
fragment is compared against phrases in publicly available sources, such as 
ICD9 diagnoses and US census names. In the term frequency phase, the count 
of each token is retrieved from a pre-processed corpus of open access medical 
publications.  
 
The annotation pipeline produces a high dimensional feature set that is very 
sparse, making the classification step more difficult. There are a number of ways 
to reduce dimensionality and increase feature set density, such as clustering 
similar features[29-31], removing features with low information content[32], 
reducing the number of class labels[22], and aggregating feature counts. 
Aggregating feature counts provided adequate feature density and reduced the 
dimensionality without discarding features that could be informative. Specifically, 
features were aggregated by source and type with respect to processing phase: 
lexical, ontological, patterned, and statistical (TABLE 2).  



 
 
Lexical Ontological Patterned Statistical 
Part of 
Speech(POS) # matches in HL7 2.5 # matches of PHONE TF (Token) 

POS (Binned) # matches in HL7 3.0 # matches of DATE TF (Token, 
POS) 

Capitalization # matches in ICD9 CM # matches of AGE !!
!! # matches in ICD10 CM # matches of ID !!
!! # matches in ICD10 PCS # matches of PATIENT !!
!! # matches in LOINC # matches of DOCTOR !!
!! # matches in MESH # matches of LOCATION !!
!! # matches in RXNORM # matches of HOSPITAL !!
!! # matches in SNOMED # matches of Hospital File !!
!! # matches in COSTAR # matches of Private File !!
!! # matches in U.S. Census Names !! !!

 
Table 2: Complete list of all 26 features annotated by the NLP pipeline. In 
the lexical phase, part of speech and capitalization usage is annotated for each 
word token. In the ontological phase, each word is compared to a list of standard 
medical ontologies – dictionaries of medical conditions and services. In the 
patterned phase, word tokens are compared against suspicious patterns of 
HIPAA identifiers. In the statistical phase, each word token is annotated with the 
frequency of appearance in public and private medical texts.  
 
 
Classification 
 
The feature set is then processed through Weka [33] using a J48 decision 
tree[34] classification algorithm, a popular open source implementation of the 
C4.5 decision tree algorithm. J48 was chosen for several reasons. First, decision 
trees do not require “binning” value ranges to be effective[35]. This was required 
because the correct value ranges were not known prior to classifier training. 
Second, decision trees can build a model for multiple class types. This is 
important because different types of PHI have different rules associated with 
them. For example, patient names are nouns whereas medical record numbers 
are numbers. A binary classifier would ignore these characteristic differences 
across PHI types and likely cause more errors.  
!

!

Training  
 
The primary data used for training and testing was the I2B2 de-id challenge 
data.[13] This data consists of 669 training cases and 220 testing cases. The 
cases are a fully annotated gold standard set of discharge summaries. To 
calculate frequencies of word occurrences, we randomly selected 10,000 publicly 



available peer reviewed medical publications. This was necessary as many valid 
word tokens appear only once or not at all in any random selection of physician 
notes. Using more than 10,000 publications for training did not alter performance, 
and was computationally feasible using inexpensive commodity hardware.  
 
On average there were 520 words (tokens) per case, and an average of 39 PHI 
words per case. As expected, most word tokens were not patient identifiers (PHI) 
-- the ratio of PHI words to non-PHI words was 1:15. Training a classifier using all 
of the available training instances would highly favor non-PHI classifications[36]. 
To address this issue, the training set was compiled using all of the PHI words 
and an equally sized random selection of non-PHI words.  
 
 
III. RESULTS 
 
Summary  
 
The training model was applied to an independent validation corpus of 220 
discharge summaries from the i2b2 de-id challenge. Most importantly, this 
method was 99.4% sensitive to unique identifiers such as patient name and 
home address. Identifiers with lower risk – such as hospital name or dates of 
treatment– were removed 97.7% of the time. This method was 98% sensitive to 
removal of all PHI types and 89% specific (TABLE 3). In this context, sensitivity is 
the percentage of patient identifiers that were removed (Equation 1). Specificity is 
the percentage of sharable words that remain in the processed document 
(Equation 2). The automated performance matches or exceeds that of two 
human evaluators[37] and preserves the readability of the original text [37].  
 
 
Equation 1: Sensitivity  
 

 
 
 
Equation 2: Specificity 
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Sensitivity 

 
Sens Spec 

  ID Hospital Doctor Date Patient Location Phone Age   Any 
PHI 

Not 
PHI 

All 99.9% 91.8% 99.3% 99.9% 98.0% 91.7% 97.0% 100.0%   98.1% 89.3% 
Part of 
Speech 95.3% 90.8% 90.3% 99.4% 91.5% 98.2% 100.0% 0.0%   95.0% 55.7% 

UMLS 99.9% 88.2% 91.8% 99.6% 84.6% 82.5% 100.0% 100.0%   95.0% 46.1% 

Regex 86.6% 54.1% 78.8% 98.1% 29.4% 7.8% 92.1% 0.0%   79.7% 95.8% 

TF 99.9% 97.7% 93.0% 100.0% 84.6% 91.7% 100.0% 100.0%   97.2% 73.9% 

 9 Way classification 
 

Binary Class 
 
Table 3: Classifier results. The Multi-class classifier shown on left achieves 
differing sensitivity depending on the PHI type considered and the group of 
features being evaluated. Specificity remains constant in both the multi-classifier 
case and binary classifier cases as there is no penalty for confusing between PHI 
categories. Green denotes excellent classifier performance >95%. Black denotes 
mediocre performance >85% <95%. Red denotes unacceptable performance, 
<85%. 
 
 
 
Misclassifications 
 
The words “of”, “hospital”, and “clinic” were overwhelmingly the most commonly 
missed PHI words. These common words account for 122 of 173 partial misses, 
and pose little to no risk to patient privacy. 
 
We performed a manual review of each misclassification (TABLE 4, 
supplemental material) and determined that no unique identifiers were left fully 
intact. Partial redactions – such as properly removing the patient last name but 
missing the patient first name were rare (13 word tokens in 12 cases). Lower risk 
identifiers such as hospital name and date of treatment were also rare. Only two 
dates and 2 hospital names were left fully intact.  
 
  



 
 

PHI Type # Identified # LDS # Missed 

Hospital 0 134 134 (1633) 
Age 0 0 0 (3) 
Date 0 4 4 (3673) 
Doctor 0 15 15 (2097) 
Location 4 14 18 (217) 
Patient 8 0 8 (402) 
ID 1 1 2 (1455) 
Phone 0 5 5 (165) 
Totals 13 173 186 (9645) 

 
Table 4: Misclassifications. The majority of misclassifications would be allowed 
with a Limited Data Set (LDS) agreement. The minority of misclassifications refer 
to a single patient, which would require Identified level data access.   
 
 
 
Part of Speech 
 
Every type of PHI is a noun or number. Interestingly, this fact alone yielded better 
than 90% sensitivity for 7 out of 8 PHI types (TABLE 3). However, many naturally 
occurring words and medically relevant concepts can also appear as nouns and 
numbers. To distinguish PHI from nouns and numbers that are naturally 
occurring, a term frequency calculation was applied. Similarly, nouns and 
numbers with medical relevance were distinguished by their presence in one or 
more medical vocabularies.  
 
Term Frequencies  
 
Medical publications do not refer to individually named patients. Even in medical 
case studies, the patient name, home address, phone number, and medical 
record number must be withheld in accordance with law. This guarantees that all 
high-risk PHI elements in Table 1 will not be present in the publication dataset. It 
was therefore not surprising to find that patient specific identifiers were not 
frequently reported in the text of medical publications. As a result, classification 
of PHI using only term frequency and part of speech yielded high scrubbing 
performance, with 97% sensitivity and 74% specificity.  
 
As expected, a first or last name would sometimes match an author name in the 
publication text. However, since author names and references list were removed 
during preprocessing, the overlap in names was minimized. There are other 



examples where patient identifiers can overlap with text in publications, for 
example when a patient lives on a street with the same name as a medical 
facility used in a published study. Nevertheless, patient identifiers are much less 
likely to appear in journal publications. To test and quantify this assumption, term 
frequencies were calculated across all word tokens in publication, training, and 
test datasets. Training and test datasets were split into groups of words 
containing PHI and not containing PHI. Histograms were then created, where the 
x-axis is the number of times a word appeared in all medical publications and the 
y-axis is the number of distinct words. A small percentage of common words 
created a skewed distribution, which was log normalized for visualization clarity. 
Figure 3 shows that PHI words are less frequently used in journal publications 
than non-PHI words. This is true with or without considering the part of speech 
for both the training and test datasets.  
 

 
 
Figure 3: Term Frequency Distributions in PHI and non-PHI word tokens  
In each of the four histograms, the log normalized term frequency (x-axis) is 
plotted against the percentage of word tokens. PHI words (red) are more 
common on the left hand side of each histogram, showing that PHI words tend to 
be rarer than non-phi words (blue).  Top Figures (a) and (b) contain training data. 
Bottom Figures (c) and (d) contain testing data. Histograms for Training and 
Testing are characteristically similar. Term frequency histograms on the left (a) 
and (c) refer to words matched according to their part of speech. Term frequency 
histograms on the right (b) and (d) refer to raw word matches.  
 
 
 



Medical Vocabularies  
 
Ten vocabularies in the Unified Medical Language System were selected in order 
to span a very wide range of demographic terms, diagnoses, lab tests, 
medication names, and procedures. Surprisingly, a decision tree trained only to 
distinguish PHI from medical concepts yielded very high sensitivity (95%), albeit 
with poor specificity (46%). This suggests that there is almost no overlap 
between medical concepts and patient identifiers. These findings provide 
evidence that automatic retrieval of coded medical concepts (autocoding) is also 
useful for de-identification. In this way, parallel autocoding and de-identification 
provides maximum research utility while minimizing the risk of patient disclosure.  
 
Regular Expressions  
 
Regular Expressions yielded the highest specificity (96%) with the lowest 
sensitivity (80%) of any feature group tested in isolation (TABLE 3). This matches 
our experience using a previous version of the HMS Scrubber in new medical 
center settings without customization and without inspecting the pathology report 
header[15]. We expected the regular expressions to outperform all other feature 
groups with respect to dates, phone numbers, and ages but this was not the 
case. This either means that we used Beckwith’s regular expression rules 
incorrectly or there are more ways to express these simple concepts than one 
might expect. Nevertheless, regular expressions slightly improved the overall 
classification specificity.  
 
IV. DISCUSSION  
 
Can we use data that is publicly available to recognize and remove confidential 
information from physician notes? Can we accelerate the rate of sharing 
physician notes for research without compromising patient confidentiality? Can 
we achieve these goals while respecting the challenges and responsibilities 
among hospital privacy boards? These questions motivated the authors to 
compare public and private medical texts to learn the distributions and lexical 
properties of Protected Health Information. The results of this experiment show 
that publicly available medical texts are highly informative for PHI recognition, 
resulting in performance that is likely to be approved for research use among by 
hospital review boards. 99.4% of unique patient identifiers that pose highest 
confidentiality risk were removed by this method, and no complete patient names 
or ID numbers were missed. The remaining misclassifications were common 
words appearing in hospital names, which pose minimal risk to patient privacy. A 
useful byproduct of this de-identification process is that coded medical 
concepts[38] are also stored for later search[20] and retrieval[39]. This approach 
to de-identification both reduces unauthorized disclosures and increases 
authorized use, a position previously confirmed by numerous hospital privacy 
boards [15, 20, 39].  
 
Comparing public and private text sources reveals interesting properties of PHI. 



Words in physician notes that frequently appear in medical journal publications 
and concept dictionaries are highly unlikely to contain PHI. Conversely, words in 
physician notes that are nouns and numbers are more likely to contain PHI. It is 
interesting to speculate just how far publicly available text can be leveraged for 
de-identification tasks.  
 
In a state of the art review of de-identification, Ozuner and Szolovits 
appropriately ask “how good is good enough?[13]” In this study, we sought to 
achieve performance levels that were already considered satisfactory by hospital 
privacy boards[15] with minimal investment. Numerous tradeoffs were made to 
achieve this goal. First, sensitivity was strongly favored over specificity, 
especially for patient names and ID numbers that have highest risk of disclosure. 
Second, we favored default configuration over hospital-specific human 
refinement. In our experience, site-specific modification of patient names lists 
and regular expressions can be laborious and can lead to “overscrubbing” 
information that is valuable for research. Third, we needed the algorithm to run 
on a single computer using commodity hardware, both to satisfy IRB concerns 
over data-duplication and reuse hardware already in place. Fourth, we wanted to 
make as few assumptions as possible about the training set to avoid 
unnecessary overfitting.  
 
There were several limitations to this study. Term frequency calculations were 
performed for single word tokens. Increasing the term frequency to use two or 
more words might improve patient name recognition. For example, patients are 
more likely to have a first or last name in common with an author than a full 
name. Similarly, patient home addresses are highly unlikely to be found in 
published medical journals. However, ngram computation can quickly lead to 
exponential time complexity, requiring that unscrubbed notes be copied and 
shared on compute clusters for processing. This could create a paradox, as the 
very purpose of scrubbing is to increase sharing with minimal risk of disclosure. 
Simply, hospital privacy boards may disallow distributed processing for purposes 
of de-identification.  
 
There is also the potential that we too have overfit our model to training 
examples and were fortunate enough to have the model validated in an 
independent sample. There are several cases where classifying PHI in new 
physician notes could be significantly less accurate. PHI words and phrases that 
frequently appear in medical publications and dictionaries are the most difficult to 
classify, although the number of times this occurs appears negligible. 
Incoherently written physician notes may be difficult to tag for part of speech, 
which would likely degrade classifier accuracy. Datasets that have different 
probability distributions and term frequency could also pose problems. In each of 
these potentially limiting examples, a new corpus would have to be 
characteristically different from the testing and training examples studied here.  
 



We recommend that this de-identification method be used according to 
procedures that were previously acknowledged by four hospital IRBs[15, 20]. The 
recommended workflow is as follows. Physician notes are de-identified and 
autocoded such that the scrubbed report is saved in a secured database and 
searchable according to medical vocabularies. Search access is limited to 
authorized investigators affiliated with the institution hosting the data, and under 
no circumstances should the textual data be made available for public download. 
Searching for patient cohorts matching study criteria occurs in an anonymized 
manner, meaning that only counts are returned with the first level of access. After 
finding a cohort of interest, an investigator may apply for access to review the de-
identified cases. By increasing the level of access commensurate with the needs 
of a study[20], the risk to patient disclosure is minimized while allowing many 
investigators the ability to query and browse the valuable collection medical 
notes.  
 
The methods proposed here can be put to practical use today to help unlock the 
tremendous research potential of vast quantities of free-text physician notes 
accumulating in electronic medical record systems worldwide. 
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